Гипоксия мозга – причины, симптомы, лечение

Слабость и усталость

Гипоксия делает нас слабыми. Жизнь в теле поддерживается непрерывным и контролируемым организмом окислением кислородом органических веществ. Без кислорода энергии становится в разы меньше, потому что недостаток кислорода ослабляет биологическое окисление.

В предыдущей статье мы выяснили, что снижение интенсивности тканевого дыхания означает анаэробный распад гликогена. Это токсичный и малопроизводительный гликолиз, который в свою очередь приводит к уменьшению энергетического запаса [ 1 ]. В этом случае в клетках, пусть и неодинаково, снижается обновление биологических «батареек» АТФ. В итоге уровень производства энергии падает, клетки испытывают недостаток энергии, их рабочие функции и деление замедляются.

Наиболее активно гликолиз проходит в мышцах и нервных клетках. Поэтому при гипоксии мышцы и нейроны пребывают в энергетическом голоде. Мышцы теряют тонус, теряется внимание, появляется сонливость, голова «плохо варит»… 

В ответ на снижение обмена веществ и накопление кислот в тканях, клетки посылают в головной мозг сигнал «я устал». Появляется чувство усталости, падает мышечная сила и трудоспособность.

Мы «садимся» как разряженный аккумулятор, а затем долго выводим недоокисленные метаболиты. В этом состоянии человеку ничего не хочется делать, возникает сонливость и адинамия. Это состояние может продолжаться годами. Даже после продолжительного сна человек сонный и вялый. [ 2 ]

История

Большую роль в изучении проблемы Г* сыграли отечественные ученые. Основу разработки проблемы Г. заложил И. М. Сеченов фундаментальными работами по физиологии дыхания и газообменной функции крови в условиях нормального, пониженного и повышенного атмосферного давления. В. В. Пашутин впервые создал общее учение о кислородном голодании как одной из основных проблем общей патологии и в значительной мере определил дальнейшее развитие этой проблемы в России.

В «Лекциях общей патологии» Пашутин (1881) дал близкую к современной классификацию гипоксических состояний. П. М. Альбицкий (1853—1922) установил значение фактора времени в развитии Г., изучил компенсаторные реакции организма при недостатке кислорода и описал Г., возникающую при первичных нарушениях тканевого обмена. Проблему Г.

За рубежом Бер (P. Bert) изучал влияние колебаний барометрического давления на живые организмы; исследования высотной и некоторых других форм Г. принадлежат Цунтцу и Леви (N. Zuntz, A. Loewy, 1906), Ван-Лиру (Е. Van Liere, 1942); механизмы нарушений системы внешнего дыхания и их роль в развитии Г. описали Дж.

Гипоксия ухудшает работу легких

Нарушения жизнедеятельности организма, так или иначе, всегда связано с изменением работы клеток. Одно из наиболее ранних проявлений повреждения клеток — нарушение биоэнергетических функций митохондрий.

Митохондрии — это своеобразные энергостанции клеток. Чем мощнее наш аппарат митохондрий, тем больше у нас способность к энергообразованию, и тем больший диапазон внешних воздействий наши клетки способны выдержать и восстановить свою структуру [ 4 ].

Увеличение размеров и количества митохондрий повышает аэробные возможности мышц. Интенсивность силовой способности мышц возрастает в результате повышения производительности митохондрий. В гипоксии скорость потребления кислорода митохондриями снижается, что сказывается на обеспечении клеток энергией, необходимой для их деятельности.

Уменьшение потребления кислорода митохондриями наблюдается при воздействии:

  • неблагоприятных внешних факторов — курение, проживание вблизи крупных промышленных предприятий, урбанизация и т.п.,
  • внутренних — болезни, лекарственная терапия, состояния после болезни, физиологическое старение и т.д.,
  • при действии токсических соединений, например, ионов тяжелых металлов, таких как ртуть или серебро, ряда гидрофобных соединений, производных различных углеводородов,
  • а также при перекисном окислении липидов (свободные радикалы).

Эти нарушения функционирования клетки и повреждения могут приводить к её гибели. 

Гипоксия мозга - причины, симптомы, лечение

В старости поступление кислорода в митохондрии снижается и возрастает действие токсинов. Кроме того, у пожилого человека снижается проницаемость наружной мембраны митохондрии, что делает их менее стойкими, хрупкими и уязвимыми. Митохондрии уменьшаются в размерах и падает их общее количество в клетке. Как и гипоксия, это ограничивает их способность к энергообразованию.

Неудивительно, что электронно-микроскопические исследования А. С. Ступиной (1974) показали, что в старости часто встречаются необычные формы митохондрий — от фрагментированных, до гигантских.

Гипоксия препятствует нормальному газообмену в легких, что только углубляет кислородную недостаточность.

При нехватке кислорода в тканях жизненно важных органов, дыхательный центр возбуждается, что увеличивает частоту и глубину дыхательных движений. Дыхание учащается, создается ощущение недостатка воздуха и появляется одышка.

Частое дыхание и одышка способствуют вымыванию углекислого газа из организма. Уменьшение в крови углекислоты увеличивает связь кислорода и гемоглобина, что затрудняет поступление кислорода в клетки (эффект Вериго-Бора)… и гипоксия усиливается. Усиление тяжести гипоксии угнетает дыхательный центр, дыхание становится поверхностным. Жизненная емкость легких снижается.

Центральная нервная система первой реагирует на недостаток кислорода, поскольку на единицу массы она потребляет его в 30 раз больше, чем мышечная ткань.

В гипоксии легкой степени, нарушения сферы высшей нервной деятельности проявляются в нарушении сна, повышенном возбуждении, снижении концентрации внимания и памяти. Возможна депрессия, потеря чувствительности и др.

Рассмотрим динамику расстройств высшей нервной деятельности, на примере безакклиматизационного подъема в горы.

Основные симптомы гипоксии головного мозга

Подъем на высоту 3500 м вызывает общее возбуждение. При этом внимание ослабляется и увеличивается число ошибок в решении логических задач. Изменяется почерк, память слабеет. Дальнейший подъем на 5500 м вызывает сонливость и безразличие к окружающему миру, а у некоторых людей наоборот — возбуждение и бред.

Способность ориентироваться во времени и пространстве теряется, нарушается координация движений, походка. Снижается болевая чувствительность и пропадает чувство вкуса пищи и напитков. На высоте более 6000 м возникает потеря сознания, появляются судороги, возможен паралич движений и дальнейшая смерть.

Чтобы насытить ткани кислородом во время гипоксии, организм стремится захватить больше кислорода в легких, увеличивает количество эритроцитов в крови, и стремится доставить их как можно быстрее, поэтому увеличивается частота сердечных сокращений.

Продолжительная работа сердца в таком усиленном режиме преждевременно изнашивает его. Возрастает систолическое и диастолическое артериальное и венозное давление, что может стать постоянным явлением (гипертония). Из-за роста давления возможен шум в ушах, головокружения, головная боль и другие симптомы.

Если тяжесть кислородного голодания нарастает, движения сердечной мышцы существенно замедляются, скорость кровотока падает, возникает артериальная гипотония, увеличивается вязкость крови. Почему при гипоксии слабеет сердце? Из-за недостатка энергии.

Сердце — одно из наиболее энергично работающих органов. Скорость потребления кислорода в кардиомиоцитах мышц миокарда изменяется от 10 мл в покое, до 100 мл в период активной нагрузки на 100 г/мин [ 12 ]. Миокард поглощает, в среднем, 10 % от всего кислорода потребляемого организмом, при этом масса сердца составляет 0,5 % от массы тела [ 13 ].

Недостаток кислорода вызывает дефицит энергии в сердечной мышце, и в ней растут повреждения кардиомиоцитов. Анаэробный гликолиз быстро истощает запасы энергетических субстратов, белковая и жировая дистрофия кардиомиоцитов прогрессирует, что приводит к падению их сократительной способности.

Рис. 3. Электроэнцефалограммы больных с гипоксией головного мозга (многоканальная запись)

Обостряет ситуацию с кровоснабжением нарушение переноса через мембрану ионов К и Са2 , и снижение активности симпатико-адреналовой системы, из-за чего падает тонус сосудов.

Снижение артериального давления связано и с накоплением в крови и тканях кислых продуктов метаболизма, что расширяет сосуды. На поздних стадиях гипоксии клетки гладких мышц сосудов полностью теряют способность сокращаться.

Так возникает венозный застой, а вместе с ним растяжение и стойкое расширение вен. Расширение венозных сосудов проявляется в расширении вен на ногах с образованием варикоза, а также расширении геморроидальных вен с развитием геморроя. [ 14 ]

Гипоксия уменьшает количество углекислоты в крови, что увеличивает ее свертываемость, а это в сочетании с замедлением тока крови в венах способствует застою крови и развитию сосудистых заболеваний [ 15 ].

Тяжесть нарушения микроциркуляции зависит от степени гипоксии. В тяжелых случаях, организм резко ограничивает кровоток во всех органах, кроме мозга и сердца (они больше других зависят от поступления кислорода). Это срабатывает, но оставляет другие органы без достаточного объема крови. Скорость коронарного кровотока может возрасти в 2-3 раза за счет уменьшения кровотока в других органах [ 16 ].

Капиллярное кровообращение замедляется вплоть до полной остановки. Проницаемость капиллярных стенок повышается, поэтому возрастает поступление белков плазмы крови в ткани. Так появляется и нарастает отек тканей, который часто принимают за ожирение.

Особенно опасно снижение кровотока через почки, поскольку они очень чувствительны к гипоксии и ишемии. При острой гипоксии в почках нередко развивается некроз коркового слоя, что приводит к острой почечной недостаточности.

Гипоксия — одна из основных причин хронической почечной недостаточности, которой сегодня страдает до 10 % населения [ 17 ]. Как при почечной недостаточности бикарбонатные ванны помогают очищать кровь см. тут.

Классификация

Широкое распространение получила классификация Баркрофта (1925), различавшего три типа Г. (аноксий): 1) аноксическая аноксия, при к-рой понижено парциальное давление кислорода во вдыхаемом воздухе и содержание кислорода в артериальной крови; 2) анемическая аноксия, в основе к-рой лежит уменьшение кислородной емкости крови при нормальном парциальном давлении кислорода в альвеолах и его напряжении в крови;

3) застойная аноксия, возникающая вследствие недостаточности кровообращения при нормальном содержании кислорода в артериальной крови. Питерс и Ван-Слайк (J. P. Peters, D. D. Van Slyke, 1932) предложили различать и четвертый тип — гистотоксическую аноксию, к-рая возникает при некоторых отравлениях в результате неспособности тканей в должной мере использовать кислород.

Термин «аноксия», применяемый этими авторами и означающий полное отсутствие кислорода или полное прекращение окислительных процессов, неудачен и постепенно выходит из употребления, т. к. полное отсутствие кислорода, как и прекращение окисления, в организме при жизни практически никогда не встречается.

На конференции по проблеме Г. в Киеве (1949) была рекомендована следующая классификация. 1. Гипоксическая Г.: а) от понижения парциального давления кислорода во вдыхаемом воздухе; б) в результате затруднения проникновения кислорода в кровь через дыхательные пути; в) вследствие расстройств дыхания. 2. Гемическая Г.: а) анемический тип; б) в результате инактивации гемоглобина. 3. Циркуляторная Г.: а) застойная форма; б) ишемическая форма. 4. Тканевая Г.

В СССР распространена также классификация, предложенная И. Р. Петровым (1949); в ее основу положены причины и механизмы Г.

1. Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе (экзогенная Г.).

2. Г. при патол, процессах, нарушающих снабжение тканей кислородом при нормальном содержании его в окружающей среде или утилизацию кислорода из крови при нормальном ее насыщении кислородом; сюда относятся следующие типы: 1) дыхательный (легочный); 2) сердечно-сосудистый (циркуляторный); 3) кровяной (гемический); 4) тканевой (гистотоксический) и 5) смешанный.

Кроме того, И. Р. Петров считал целесообразным разграничивать общее и местное гипоксическое состояние.

Согласно современным представлениям, Г. (обычно кратковременная) может возникать и без наличия в организме каких-либо патол, процессов, нарушающих транспорт кислорода или его утилизацию в тканях. Это наблюдается в тех случаях, когда функциональные резервы систем транспорта и утилизации кислорода даже при максимальной их мобилизации оказываются неспособными удовлетворить резко возросшую в связи с чрезвычайной интенсивностью его функциональной активности потребность организма в энергии. Г.

Помимо классификации Г., основанной на причинах и механизмах ее возникновения, принято различать острые и хрон. Г.; иногда выделяют подострые и молниеносные формы. Точных критериев для разграничения Г. по темпу развития и продолжительности течения пока не существует; однако в клин, практике принято относить к молниеносной форме Г.

Гипоксия и боль

Если «отсидеть» ногу, в ней возникнут характерные колики. Эту боль в мускуле вызывает недостаток кислорода вследствие нарушения питания миофибрилл.

Также и в сердечной мышце продолжительный недостаток кислорода вызывает боль, известную как стенокардия или «грудная жаба», плюс микронекрозы в миокарде. Слияние таких микронекрозов может закончиться инфарктом миокарда («разрывом сердца») даже без закупорки одной из ветвей коронарной артерии. [ 5 ]

Этиология и патогенез

Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе (экзогенный тип) возникает гл. обр. при подъеме на высоту (см. Высотная болезнь, Горная болезнь). При очень быстром снижении барометрического давления (напр., при нарушении герметичности высотных летательных аппаратов) возникает симптомокомплекс, отличающийся по патогенезу и проявлениям от высотной болезни и называемый декомпрессионной болезнью (см.).

Экзогенный тип Г. возникает и в тех случаях, когда общее барометрическое давление нормально, но парциальное давление кислорода во вдыхаемом воздухе понижено, напр, при работах в шахтах, колодцах, при неполадках в системе кислородообеспечения кабины летательного аппарата, в подводных лодках, глубинных аппаратах, водолазных и защитных костюмах и т. п., а также во время операций при неисправности наркозно-дыхательной аппаратуры.

При экзогенной Г. развивается гипоксемия, т. е. уменьшается напряжение кислорода в артериальной крови, насыщение гемоглобина кислородом и общее его содержание в крови. Непосредственным патогенетическим фактором, вызывающим наблюдаемые в организме при экзогенной Г. расстройства, являются пониженное напряжение кислорода и связанный с ним неблагоприятный для газообмена сдвиг градиента давления кислорода между капиллярной кровью и тканевой средой.

Отрицательное влияние на организм может оказывать также гипокапния (см.), нередко развивающаяся при экзогенной Г. в связи с компенсаторной гипервентиляцией легких (см. Легочная вентиляция). Выраженная гипокапния приводит к ухудшению кровоснабжения мозга и сердца, алкалозу, нарушению баланса электролитов во внутренней среде организма и повышению потребления тканями кислорода.

Если наряду с недостатком кислорода в воздухе имеется значительная концентрация углекислого газа, что встречается гл. обр. в различных производственных условиях, Г. может сочетаться с гиперкапнией (см.). Умеренная Гиперкапния не оказывает отрицательного влияния на течение экзогенной Г. и даже может оказывать благоприятный эффект, который связывают гл. обр.

Гипоксия при патологических процессах, нарушающих снабжение или утилизацию кислорода тканями.

1. Дыхательный (легочный) тип Г. возникает в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушениями вентиляционно-перфузионных отношений, избыточным шунтированием венозной крови или при затруднении диффузии кислорода. Альвеолярная гиповентиляция может быть обусловлена нарушением проходимости дыхательных путей (воспалительный процесс, инородные тела, спазм), уменьшением дыхательной поверхности легких (отек легкого, пневмония), препятствием для расправления легких (пневмоторакс, экссудат в плевральной полости).

Гипоксия мозга - причины, симптомы, лечение

Она может быть вызвана также уменьшением подвижности костно-хрящевого аппарата грудной клетки, параличом или спастическим состоянием дыхательной мускулатуры (миастения, отравление кураре, столбняк), а также расстройством центральной регуляции дыхания в связи с рефлекторным или непосредственным влиянием на дыхательный центр патогенных факторов.

Гиповентиляция может возникнуть при сильном раздражении рецепторов дыхательных путей, резкой болезненности дыхательных движений, кровоизлияний, опухоли, травме в области продолговатого мозга, передозировке наркотических и снотворных средств. Во всех этих случаях минутный объем вентиляции не соответствует потребности организма, снижается парциальное давление кислорода в альвеолярном воздухе и напряжение кислорода в крови, протекающей через легкие, в результате чего может значительно уменьшиться насыщение гемоглобина и содержание кислорода в артериальной крови.

ПОДРОБНОСТИ:   Язвенно-некротический гингивит Венсана: особенности заболевания и терапии

Нарушения вентиляционно-перфузионных отношений в виде неравномерной вентиляции и перфузии могут быть обусловлены локальным нарушением проходимости дыхательных путей, растяжимости и эластичности альвеол, неравномерностью вдоха и выдоха или местными нарушениями легочного кровотока (при спазме бронхиол, эмфиземе легких, пневмосклерозе, локальном запустевают сосудистого русла легких).

При большом количестве артерио-венозных анастомозов венозная (по газовому составу) кровь переходит в артериальную систему большого круга кровообращения, минуя альвеолы, по внутрилегочным артерио-венозным анастомозам (шунтам): из бронхиальных вен в легочную вену, из легочной артерии в легочную вену и т. п.

При внутрисердечном шунтировании (см. Пороки сердца врожденные) происходит сброс венозной крови из правых отделов сердца в левые. Такого рода нарушения по своим последствиям для газообмена аналогичны истинной недостаточности внешнего дыхания, хотя и относятся, строго говоря, к циркуляторным расстройствам.

Дыхательный тип Г., связанный с затруднением диффузии кислорода, наблюдается при болезнях, сопровождающихся так наз. альвеоло-капиллярной блокадой, когда уплотнены мембраны, разделяющие газовую среду альвеол и кровь (саркоидоз легкого, асбестоз, эмфизема), а также при интерстициальном отеке легкого.

2. Сердечно-сосудистый (циркуляторный) тип Г. возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Уменьшение количества крови, протекающей через ткани в единицу времени, может быть обусловлено гиповолемией, т. е. общим уменьшением массы крови в организме (при массивной кровопотере, обезвоживании организма при ожогах, холере и др.

), падением сердечно-сосудистой деятельности. Часто встречаются различные комбинации этих факторов. Расстройства сердечной деятельности могут быть обусловлены поражением сердечной мышцы (напр., инфаркт, кардиосклероз), перегрузкой сердца, нарушениями электролитного баланса и экстракардиальной регуляции сердечной деятельности, а также механическими факторами, затрудняющими работу сердца (тампонада, облитерация полости перикарда и др.

Циркуляторная Г. сосудистого происхождения развивается при чрезмерном увеличении емкости сосудистого русла вследствие рефлекторных и центрогенных нарушений вазомоторной регуляции (напр., массивное раздражение брюшины, угнетение вазомоторного центра) или пареза сосудов в результате токсических влияний (напр.

, при тяжелых инфекционных болезнях), аллергических реакций, нарушений электролитного баланса, при недостаточности катехоламинов, глюкокортикоидов и других патол, состояниях, при которых нарушается тонус сосудистых стенок. Г. может возникать в связи с распространенными изменениями стенок сосудов системы микроциркуляции (см.

), повышением вязкости крови и другими факторами, препятствующими нормальному продвижению крови через капиллярную сеть. Циркуляторная Г. может носить локальный характер при недостаточном притоке артериальной крови к органу или участку ткани (см. Ишемия) или затруднении оттока венозной крови (см. Гиперемия).

Нередко в основе циркуляторной Г. лежат сложные комбинации различных факторов, изменяющиеся при развитии патол, процесса, напр, острая сердечно-сосудистая недостаточность при коллапсе различного происхождения, шоке, аддисоновой болезни и др.

Гемодинамические показатели в разных случаях циркуляторной Г. могут варьировать в широких пределах. Для газового состава крови в типичных случаях характерно нормальное напряжение и содержание кислорода в артериальной крови, снижение этих показателей в венозной крови и высокая артерио-венозная разница по кислороду.

3. Кровяной (гемический) тип Г. возникает в результате уменьшения кислородной емкости крови при анемиях, гидремии и нарушении способности гемоглобина связывать, транспортировать и отдавать тканям кислород. Выраженные симптомы Г. при анемиях (см.) развиваются лишь при значительном абсолютном уменьшении эритроцитарной массы или резко пониженном содержании гемоглобина в эритроцитах.

Такого типа анемии возникают при истощении костномозгового кроветворения на почве хрон, кровотечений (при туберкулезе, язвенной болезни и др.), гемолиза (при отравлении гемолитическими ядами, тяжелых ожогах, малярии и др.), при угнетении эритропоэза токсическими факторами (напр., свинцом, ионизирующей радиацией), при аплазии костного мозга, а также при дефиците компонентов, необходимых для нормального эритропоэза и синтеза гемоглобина (недостаток железа, витаминов и др.).

Кислородная емкость крови понижается при гидремии (см.), при гидремической плеторе (см.). Нарушения транспортных свойств крови в отношении кислорода могут быть обусловлены качественными изменениями гемоглобина. Наиболее часто такая форма гемической Г. наблюдается при отравлении окисью углерода (образование карбоксигемоглобина) , метгемоглобинообразователями (см. Метгемоглобинемия), а также при некоторых генетически обусловленных аномалиях гемоглобина.

Для гемической Г. характерно сочетание нормального напряжения кислорода в артериальной крови с пониженным его содержанием, в тяжелых случаях — до 4—5 об. %. При образовании карбоксигемоглобина и метгемоглобина насыщение оставшегося гемоглобина и диссоциация оксигемоглобина в тканях могут быть затруднены, вследствие чего напряжение кислорода в тканях и в венозной крови оказывается значительно пониженным при одновременном уменьшении артерио-венозной разницы содержания кислорода.

Гипоксия чаще вызывает голод

На начальных этапах наблюдается дисфункция микроциркуляции головного мозга, изменение состояния стенок сосудов, нейроцитов, дистрофия участков мозговой ткани. В дальнейшем происходит размягчение клеток или их постепенное восстановление при своевременно проведенном лечении.

Основные причины гипоксии головного мозга острой формы:

  • острая сердечная недостаточность;
  • асфиксия;
  • поперечная блокада сердца;
  • черепно-мозговые травмы;
  • атеросклероз;
  • перенесенные операции на сердце;
  • отравление окисью углерода;
  • тромбоэмболия сосудов головного мозга;
  • ишемическая болезнь;
  • инсульт;
  • заболевания дыхательной системы;
  • анемия.

Хроническая гипоксия развивается при работе в неблагоприятных условиях, проживании в горных районах, где воздух разреженный. Постепенное отложение атеросклеротических бляшек на стенках сосудов приводит к уменьшению просвета артерий, замедлению кровотока. Если происходит полная закупорка сосуда, мозговые ткани отмирают, развивается инфаркт, что может стать причиной тяжелых осложнений, летального исхода.

Для того чтобы в режиме бескислородного гликолиза зарядить 36 АТФ, питательных веществ нужно в 6 раз больше — не 1, а 6 молекул глюкозы. Ничего удивительного, что без кислорода запас гранул гликогена быстро заканчивается и человек часто испытывает голод в течение дня, желание съесть что-то сладкое (быстрые углеводы).

Продолжительная тяжелая гипоксия действует на чувство голода иначе: пропадает аппетит и появляется чувство отвращения к еде как к таковой. 

Патологическая анатомия

Макроскопические признаки Г. немногочисленны и неспецифичны. При некоторых формах гипоксии могут наблюдаться застойные явления в коже и слизистых оболочках, венозное полнокровие и отек внутренних органов, особенно головного мозга, легких, органов брюшной полости, точечные кровоизлияния в серозные и слизистые оболочки.

Разрушительное действие свободных радикалов на клетку

Наиболее универсальным признаком гипоксического состояния клеток и тканей и важным патогенетическим элементом Г. является повышение пассивной проницаемости биол, мембран (базальных мембран сосудов, клеточных оболочек, мембран митохондрий и др.). Дезорганизация мембран приводит к выходу из субклеточных структур и клеток ферментов в тканевую жидкость и кровь, что играет существенную роль в механизмах вторичной гипоксической альтерации тканей.

Ранним признаком Г. является нарушение микроциркуляторного русла — стазы, плазматическое пропитывание и некробиотические изменения сосудистых стенок с нарушением их проницаемости, выходом плазмы в перикапиллярное пространство.

Микроскопические изменения паренхиматозных органов при острой Г. выражаются в зернистой, вакуольной или жировой дистрофии паренхиматозных клеток, исчезновении из клеток гликогена. При резко выраженной Г. могут возникать участки некроза. В межклеточном пространстве развиваются отек, Мукоидное или фибриноидное набухание вплоть до фибриноидного некроза.

При тяжелой форме острой Г. рано выявляются различной степени поражения нейроцитов вплоть до необратимых.

Рис. 1. Электронограмма нейроцита коры больших полушарии головного мозга. Выражены явления хроматолиза: 1 — набухшие, лишенные крист митохондрии указывают на внутриклеточный отек и являются ранним признаком гипоксии; 2— осмиофильные включения, свидетельствующие о нарушении липидно-белкового обмена и являющиеся признаком гипоксии; 3 — вакуоли, чаще образующиеся на месте митохондрий, являются следствием гипоксии; 4 — скопление глыбок хроматина в ядре; X 6300.

Рис. 1. Электронограмма нейроцита коры больших полушарии головного мозга. Выражены явления хроматолиза: 1 — набухшие, лишенные крист митохондрии указывают на внутриклеточный отек и являются ранним признаком гипоксии; 2— осмиофильные включения, свидетельствующие о нарушении липидно-белкового обмена и являющиеся признаком гипоксии; 3 — вакуоли, чаще образующиеся на месте митохондрий, являются следствием гипоксии; 4 — скопление глыбок хроматина в ядре; X 6300.

Рис. 2. Электронограмма нейроцита коры больших полушарий головного мозга с осмиофилией ядра: 1 — измененные митохондрии; 2 — вакуоли; 3 — темные осмиофильные тела, свидетельствующие об аутофагических процессах в клетке вследствие нарушения белкового обмена при гипоксии; 4 — расширенные цистерны гранулярного ретикулума (показатель внутриклеточного отека при гипоксии); 5 — набухшие отростки астроцитов, окружающие нервную клетку, что указывает на изменение транспорта питательных веществ к клетке и является реакцией глиальной клетки на гипоксию; х 6300.

Рис. 2. Электронограмма нейроцита коры больших полушарий головного мозга с осмиофилией ядра: 1 — измененные митохондрии; 2 — вакуоли; 3 — темные осмиофильные тела, свидетельствующие об аутофагических процессах в клетке вследствие нарушения белкового обмена при гипоксии; 4 — расширенные цистерны гранулярного ретикулума (показатель внутриклеточного отека при гипоксии); 5 — набухшие отростки астроцитов, окружающие нервную клетку, что указывает на изменение транспорта питательных веществ к клетке и является реакцией глиальной клетки на гипоксию; х 6300.

В клетках головного мозга обнаруживают вакуолизацию, хроматолиз, гиперхроматоз, кристаллические включения, пикноз, острое набухание, ишемическое и гомогенизирующее состояние нейронов, клетки-тени. При хроматолизе наблюдается резкое уменьшение числа рибосом и элементов гранулярного и агранулярного ретикулума, количество вакуолей увеличивается (рис. 1).

Изменения ультраструктуры позволяют выделить следующие типы повреждения нейроцитов: 1) клетки со светлой цитоплазмой, уменьшением количества органелл, поврежденным ядром, очаговой деструкцией цитоплазмы; 2) клетки с повышением осмиофилии ядра и цитоплазмы, что сопровождается изменениями почти всех компонентов нейрона; 3) клетки с увеличением количества лизосом.

В дендритах появляются вакуоли различных размеров, реже мелкогранулярный осмиофильный материал. Ранним симптомом повреждения аксонов является набухание митохондрий и деструкция нейрофибрилл. Заметно изменяются некоторые синапсы: пресинаптический отросток набухает, увеличивается в размерах, количество синаптических пузырьков уменьшается, иногда они склеиваются и располагаются на нек-ром расстоянии от синаптических мембран.

Выраженность изменений клеток зависит от тяжести Г. В случаях тяжелой Г. может происходить углубление патологии клетки после устранения причины, вызвавшей Г.; в клетках, не имеющих признаков серьезных повреждений в течение нескольких часов, спустя 1—3 сут. и позже можно обнаружить структурные изменения различной тяжести.

В глиальных клетках также наблюдаются дистрофические изменения. В астроцитах появляется большое количество темных осмиофильных гранул гликогена. Олигодендроглия имеет тенденцию к пролиферации, количество клеток-сателлитов увеличивается; в них видны набухшие, лишенные крист митохондрии, крупные лизосомы и скопления липидов, избыточное количество элементов гранулярного ретикулума.

В эндотелиальных клетках капилляров изменяется толщина базальной мембраны, появляется большое количество фагосом, лизосом, вакуолей; это сочетается с перикапиллярным отеком. Изменения капилляров и увеличение числа и объема отростков астроцитов свидетельствуют об отеке мозга.

При хрон. Г. морфол, изменения нервных клеток обычно менее выражены; глиальные клетки ц. н. с. при хрон. Г. активизируются и усиленно пролиферируют. Нарушения в периферической нервной системе заключаются в утолщении, извитости и распаде осевых цилиндров, набухании и распаде миелиновых оболочек, шаровидных вздутиях нервных окончаний.

Для хрон. Г. характерно замедление регенеративных процессов при повреждении тканей: угнетение воспалительной реакции, замедление формирования грануляций и эпителизации. Угнетение пролиферации может быть связано не только с недостаточным энергетическим обеспечением анаболических процессов, но и с избыточным поступлением в кровь глюкокортикоидов, что приводит к удлинению всех фаз клеточного цикла;

Гипоксия зашлаковывает организм токсинами

При гипоксии в тканях организма накапливаются не до конца расщепленные, потенциально опасные токсические продукты обмена веществ — лактат и ионы H . Запасы глюкозы быстро заканчиваются, и организм начинает сжигать жиры. Но без кислорода жирные кислоты тоже расщепляются не полностью, поэтому в клетках и крови накапливаются кетокислоты.

Так возникает лактат-ацидоз, который сдвигает рН ткани в кислую среду. Это серьезно ухудшает работу митохондрий и клеток в целом, они быстро теряют свою активность. Скорость деления клеток, как и любых других биохимических реакций замедляется.

Снижение интенсивности окислительно-восстановительных процессов (производства АТФ) проявляется в виде снижения метаболизма, увеличения вакат-кислорода и окислительного коэффициента мочи, увеличения содержания в крови молочной кислоты, глюкозы, кетоновых тел, редуцированного глутатиона (снижение окисленного), уменьшения резервной щелочности [ 7 ].

Эти биохимические изменения хорошо видны в клетках. В их цитоплазме появляются крупные капли жиров. Увеличиваются вакуоли, которые ответственны за «захоронение» отбросов. В клетках нарастает отек, белковая и жировая дистрофия. Митохондрии набухают и частично разрушаются. Клеточная наружная мембрана нередко становится размытой, иногда на отдельных участках разрывается. Это нарушает нормальный перенос ионов, особенно К , который накапливается в крови.

Токсины накапливаются в тканях, проникают в кровь и закисляют организм. В тяжелой гипоксии эти патологии обмена веществ вызывают некробиоз и тяжелые нарушения функций органов. Обменные процессы и ток крови замедляются, температура тела снижается (см. тут).

Чем тяжелее степень гипоксии, тем опаснее изменения. Если гипоксия длится долго, а бикарбонатный буфер истощен — клетки погибают, а на их месте появляется соединительная ткань (фиброз).

Недостаток энергии, дистрофия, некробиоз, а также ацидоз, наряду с другими патологическими изменениями обмена веществ, вызывают тяжелые нарушения функций органов и систем. Серьезное повреждение токсинами клетки может привести к её гибели.

Клинические признаки

Нарушения дыхания в типичных случаях острой нарастающей Г. характеризуются несколькими стадиями: после активации, выражающейся в углублении дыхания и (или) учащении дыхательных движений, возникает диспноэтическая стадия, проявляющаяся различными нарушениями ритма, неравномерностью амплитуд дыхательных движений.

Далее следует терминальная пауза в виде временной остановки дыхания и терминальное (агональное) дыхание, представленное редкими, короткими мощными дыхательными экскурсиями, постепенно ослабевающими до полного прекращения дыхания. Переход к агональному дыханию может происходить и без терминальной паузы через стадию так наз.

апнейстического дыхания, характеризующегося длительными инспираторными задержками, или через стадию чередования агональных дыхательных экскурсий с обычным и постепенным редуцированием последних (см. Агония). Иногда некоторые из этих стадий могут отсутствовать. Динамика дыхания при нарастающей Г. определяется афферентацией, поступающей в дыхательный центр от различных рецепторных образований, возбуждаемых происходящими при гипоксии сдвигами во внутренней среде организма, и изменением функционального состояния дыхательного центра (см.).

Нарушения сердечной деятельности и кровообращения могут выражаться в тахикардии, усиливающейся параллельно ослаблению механической деятельности сердца и уменьшению ударного объема (так наз. нитевидный пульс). В других случаях резкая тахикардия внезапно сменяется брадикардией, сопровождающейся побледнением лица, похолоданием конечностей, холодным потом и обморочным состоянием.

АД вначале имеет тенденцию к повышению (если Г. не вызвана недостаточностью кровообращения), а затем по мере развития гипоксического состояния более или менее быстро снижается, что обусловлено угнетением вазомоторного центра, нарушением свойств сосудистых стенок, уменьшением сердечного выброса и минутного объема сердца.

Нарушаются функции органов пищеварения: секреция пищеварительных желез, моторная функция пищеварительного тракта.

Функция почек претерпевает сложные и неоднозначные изменения, которые связаны с нарушениями общей и локальной гемодинамики, гормональным влиянием на почки, сдвигами кислотно-щелочного и электролитного баланса и др. При значительной гипоксической альтерации почек развивается недостаточность их функции вплоть до полного прекращения образования мочи и уремии.

При так наз. молниеносной Г., наступающей, напр., при вдыхании азота, метана, гелия без кислорода, синильной к-ты высокой концентрации, наблюдается фибрилляция и остановка сердца, большая часть клин, изменений отсутствует, т. к. очень быстро происходит полное прекращение жизненно важных функций организма.

Хрон, формы Г., возникающие при длительной недостаточности кровообращения, дыхания, при болезнях крови и других состояниях, сопровождающихся стойкими нарушениями окислительных процессов в тканях, клинически характеризуются повышенной утомляемостью, одышкой и сердцебиением при небольшой физ. нагрузке, снижением иммунной реактивности, репродуктивной способности и другими расстройствами, связанными с постепенно развивающимися дистрофическими изменениями в различных органах и тканях.

Гипоксия головного мозга наблюдается при нарушениях мозгового кровообращения, шоковых состояниях, острой сердечнососудистой недостаточности, поперечной блокаде сердца, отравлении окисью углерода и при асфиксии различного происхождения. Г. головного мозга может возникать как осложнение при операциях на сердце и магистральных сосудах, а также в раннем послеоперационном периоде.

Первоначально нарушается активное внутреннее торможение; развивается возбуждение, эйфория, снижается критическая оценка своего состояния, появляется двигательное беспокойство. Вслед за периодом возбуждения, а нередко и без него появляются симптомы угнетения коры головного мозга: вялость, сонливость, шум в ушах, головная боль, головокружение, позывы к рвоте, потливость, общая заторможенность, оглушенность и более выраженные расстройства сознания. Могу” появиться клонические и тонические судороги, непроизвольное мочеиспускание и дефекация.

При выраженной Г. развивается сопорозное состояние: больные оглушены, заторможены, иногда выполняют элементарные задания, но после неоднократного повторения, и быстро прекращают активную деятельность. Продолжительность сопорозного состояния колеблется от 1,5—2 час. до 6—7 сут., иногда до 3—4 нед. Периодически сознание проясняется, однако больные остаются оглушенными.

ПОДРОБНОСТИ:   Как укрепить сердечную мышцу в домашних условиях

При более длительном и глубоком кислородном голодании могут возникать психические расстройства в виде корсаковского синдрома (см.), который иногда сочетается с эйфорией, апатико-абулическим и астено-депрессивным синдромами (см. Апатический синдром, Астенический синдром, Депрессивные синдромы), нарушениями сенсорного синтеза (голова, конечности или все тело кажутся как бы онемевшими, чужими, размеры частей тела и окружающих предметов — измененными и др.).

Психотическое состояние с параноидно-ипохондрическими переживаниями часто сочетается с вербальными галлюцинациями на тоскливо-тревожном аффективном фоне. В вечерние и ночные часы могут возникать эпизоды в виде делириозных, делириозно-онейроидных и делириозно-аментивных состояний (см. Аментивный синдром, Делириозный синдром).

Судорожный синдром и гиперкинезы (см.) при Г. проявляются разнообразно. Обычно судороги возникают сериями под влиянием внешнего раздражителя; наиболее часто отмечаются миоклонии, начинающиеся с мышц лица, кистей рук, затем вовлекаются другие группы мышц верхних и нижних конечностей, брюшной стенки; нередко вслед за этим появляются тонические судороги:

Возрастные изменения плотности нейронов в коре могза

сгибание верхних и разгибание нижних конечностей, иногда преобладает тонус разгибателей, возникает опистотонус (см.), иногда горметония (см.). В некоторых случаях судорожный синдром начинается с опистотонуса. Обычно у больного один вид судорог сменяется другим. Расстройство сознания при судорожном синдроме — от оглушенности и сопора до легкой степени комы.

При тяжелой Г. развивается коматозное состояние, больные не реагируют на раздражители.

При легкой коме нередко определяются незначительные Менингеальные симптомы. Зрачки сужены, реакция их на свет снижена, тонус мышц конечностей обычно понижен. Корнеальные рефлексы сохранены, сухожильные рефлексы повышены или угнетены. Появляются двусторонний рефлекс Бабинского (см. Бабинского рефлекс), иногда рефлексы орального автоматизма, защитные рефлексы (см.).

При дальнейшем нарастании Г. происходит углубление коматозного состояния. Ритм дыхания нарушен, иногда развивается патол, дыхание Чейна —Стокса, Куссмауля и др. Гемодинамические показатели неустойчивые. Корнеальные рефлексы снижены, могут выявляться расходящееся косоглазие, анизокория, плавающие движения глазных яблок. Тонус мышц конечностей ослаблен, сухожильные рефлексы чаще угнетены, реже повышены, иногда выявляется двусторонний рефлекс Бабинского.

Клинически можно выделить четыре степени острой гипоксии головного мозга.

Гипоксия мозга - лечение и профилактика

I степень Г. проявляется заторможенностью, оглушенностью, тревожным состоянием или психомоторным возбуждением, эйфорией, повышением АД, тахикардией, дистонией мышц, клонусом стоп (см. Клонус). Сухожильные рефлексы повышены с расширением рефлексогенных зон, брюшные рефлексы угнетены; возникает патол, рефлекс Бабинского и др.

II степень характеризуется сопорозным состоянием в течение от нескольких часов до 4—5 сут., реже нескольких недель. У больного наблюдаются анизокория, неравномерность глазных щелей, парез лицевого нерва по центральному типу, рефлексы со слизистых оболочек (корнеальные, глоточный) снижены. Сухожильные рефлексы повышены или понижены;

появляются рефлексы орального автоматизма, двусторонние пирамидные симптомы. Могут периодически возникать клонические судороги, обычно начинающиеся с лица, затем переходящие на конечности и туловище; дезориентированность, ослабление памяти, нарушения мнестических функций, психомоторное возбуждение, делириозно-аментивные состояния.

III степень проявляется глубоким сопором, легкой, а иногда и выраженной комой. Нередко возникают клонические судороги; миоклонии мышц лица и конечностей, тонические судороги со сгибанием верхних и разгибанием нижних конечностей, гиперкинезы типа хореи (см.) и автоматизированной жестикуляции, глазодвигательные нарушения.

Наблюдаются рефлексы орального автоматизма, двусторонние патол, рефлексы, сухожильные рефлексы чаще снижены, появляются хватательные и сосательные рефлексы, мышечный тонус снижен. При Г. II — III степени возникают гипергидроз, гиперсаливация, слезотечение; может наблюдаться стойкий гипертермический синдром (см.).

При IV степени Г. развивается глубокая кома: угнетение функций коры больших полушарий головного мозга, подкорковых и стволовых образований. Кожа холодна на ощупь, лицо больных амимично, глазные яблоки неподвижны, зрачки широкие, реакция на свет отсутствует; рот полуоткрыт, приоткрытые веки приподнимаются в такт дыханию, к-рое прерывисто, аритмично (см. Биотовское дыхание, Чейна — Стокса дыхание). Сердечная деятельность и сосудистый тонус падают, резкий цианоз.

Гипоксия увеличивает количество свободных радикалов

«Недостаток кислорода угнетает митохондрическое производство энергии, в результате чего происходит большой выброс свободных радикалов, что часто приводит организм к заболеванию» — утверждает профессор иммунологии университета г. Ниигата (Япония), доктор Тору Або.

Большое количество свободных радикалов и других реактивных форм кислорода — оксидов, гидроксидов, перекисей, оказывает разрушительное действие в организме:

  • Разрушает белки мембран, что уничтожает целостность клеток. В результате процессы в клетках замедляются или идут неправильно и клетка резко стареет. Это хорошо видно по внешности — кожа становится сухой, старой, обвислой. Мышцы ослабевают, утрачивая при этом свою собранность, пружинистость.
  • Радикалы сплавляют вместе жиры и белки мембран, что делает мембрану жесткой и хрупкой. Жесткая мембрана теряет способность пропускать питательные вещества и кислород в клетку.
  • Прокалывают мембрану, что облегчает проникновение в клетку бактерий и вирусов. Такие клетки начинают плохо работать, меньше живут, плохо делятся и дают слабое, а то и вовсе генетически поврежденное потомство.
  • Изменяют и разрушают ДНК клеток, переписывают и уничтожают генетическую информацию, что приводит к мутациям.
  • Перегружают иммунную систему перечисленными выше проблемами и угрожают самой иммунной системе, нанося иммунным клеткам аналогичные разрушения.

Рис. 1. Действие свободных радикалов на клетку (оксидативный стресс).

Конечно, в организме существует антиоксидантная система, но при хронической гипоксии и постоянных атаках радикалов она не справляется.

Углекислые бикарбонатные ванны помогают нейтрализовать выброс свободных радикалов. Специалисты клиники академика РАМН Соколова Е.И. в Москве отмечают, что при увеличении углекислого газа в крови, у больных бронхиальной астмой среднетяжелого течения «…отмечается статистически значимое снижение вторичных продуктов перекисного окисления липидов, что привело к росту функциональной антиоксидантной обеспеченности организма. … Снижение свободно-радикального окисления липидов в результате гиперкапнического действия средства, оказало противовоспалительное действие». [ 8 ]

Диагностика

Диагностика основывается на симптомах, характеризующих активацию компенсаторных механизмов (одышка, тахикардия), признаках поражения головного мозга и динамике неврологических расстройств, данных исследования гемодинамики (АД, ЭКГ, сердечный выброс и др.), газообмена, кислотно-щелочного равновесия, гематологических (гемоглобин, эритроциты, гематокрит) и биохимических (молочная и Пировиноградная к-ты в крови, сахар, мочевина крови и др.) анализов.

Для выяснения причин возникновения и развития Г. имеет большое значение диагностика таких заболеваний и состояний, как эмболия сосудов головного мозга, кровоизлияние в мозг (см. Инсульт), интоксикация организма при острой почечной недостаточности (см.) и печеночной недостаточности (см. Гепатаргия), а также гипергликемия (см.) и гипогликемия (см.).

Эффективное лечение гипоксии мозга возможно лишь после того, как будет установлена причина возникновения болезни. Она выявляется как на основе медицинской истории пациента, так и с помощью диагностики различными методами:

  • Анализы крови;
  • Электрокардиограмма, которая помогает измерить активность сердца;
  • Электроэнцефалограмма, анализирующая функционирование клеток мозга;
  • Эхокардиограмма;
  • Компьютерная томография головы;
  • Магнитно-резонансная томография головы;
  • Пульсоксиметрия, помогающая установить насыщение крови кислородом (показатель у больного человека бывает ниже 95%);
  • Капнография и другие виды исследования газов выдыхаемого воздуха.

Как уже было сказано, лечение гипоксии мозга направлено в первую очередь на устранение причины заболевания, поэтому в разных случаях врач назначает различные процедуры. К примеру, при легкой форме иногда достаточно обычного проветривания помещения или прогулок на свежем воздухе, тогда как тяжелые состояния требуют серьезных врачебных процедур. Так, можно выделить отдельные методы лечения гипоксии мозга в зависимости от ее конкретного вида:

  • Экзогенная гипоксия предполагает применение кислородного оборудования (кислородных масок, баллончиков, подушек);
  • Дыхательная гипоксия требует использования препаратов, восстанавливающих работу дыхательных путей. Иногда назначается искусственная вентиляция легких;
  • Гемическая гипоксия устраняется с помощью переливания крови и лечения кислородом;
  • Циркуляторная гипоксия мозга предполагает применение препаратов с кардиотропным эффектом, направленных на улучшение микроциркуляции;
  • При тканевой гипоксии выписываются препараты, восстанавливающие утилизацию кислорода тканями, иногда применяют вентиляцию легких.

Кроме того, часто при нехватке кислорода врачи рекомендуют прием витаминов и прогулки на свежем воздухе.

Гипоксия снижает иммунитет

В гипоксических условиях иммунные функции работают плохо. Дело в том, что сама иммунная система состоит из клеток, а первое условие нормальной работы белковых тел — обеспеченность кислородом. Его дефицит приводит к недостатку АТФ, что ослабляет синтез белков и усиливает их распад. Организм может выдержать разные уровни гипоксии, но слабый синтез белков дает плохое деление клеток, а это уже прямой путь к болезням и к преждевременному старению [ 9 ].

В условии замедления обменных процессов, скопления в тканях отходов и кислой среды — иммунная система организма теряетсилу перед вирусами и болезнями.

Например, внутри прыщей, гангрен и абсцессов мало кислорода, там получают развитие анаэробные бактерии, избегающие кислорода.

Отсутствие кислорода — идеальное условие для развития раковой опухоли. Известный клеточный биолог и исследователь рака Отто Варбург обнаружил, что раковые клетки не могут вырабатывать энергию через цикл Кребса, а вместо этого пользуются бескислородным гликолизом [ 10 ].

Все виды рака успешно развиваются при низком содержании кислорода. О одним из критериев злокачественности клеток является их стабильно низкая утилизация кислорода как при 10 %, так и при 95 % насыщении клеток кислородом [ 11 ].

Лечение и профилактика

В связи с тем что в клинической практике обычно встречаются смешанные формы Г., бывает необходимо применение комплекса леч.-проф. мер, характер которых зависит от причины Г. в каждом конкретном случае.

Во всех случаях Г., вызванной недостатком кислорода во вдыхаемом воздухе, переход на дыхание нормальным воздухом или кислородом приводит к быстрой и, если Г. не зашла далеко, к полной ликвидации всех функциональных нарушений; в ряде случаев бывает целесообразно добавление 3—7% углекислого газа для стимуляции дыхательного центра, расширения сосудов мозга и сердца, предотвращения гипокапнии.

При дыхательной Г. наряду с кислородной терапией и стимуляцией дыхательного центра принимают меры к устранению препятствий в дыхательных путях (изменение положения больного, удерживание языка, при необходимости — интубация и трахеотомия), проводят хирургическое лечение пневмоторакса.

Больным с выраженной дыхательной недостаточностью или в случаях отсутствия спонтанного дыхания проводят вспомогательное (искусственное углубление самостоятельного дыхания) или искусственное дыхание, искусственную вентиляцию легких (см.). Оксигенотерапия должна быть длительной, непрерывной при содержании во вдыхаемой смеси 40—50% кислорода, иногда необходимо кратковременное применение 100% кислорода.

При циркуляторной Г. назначают сердечные и гипертензивные средства, переливание крови, электроимпульсную терапию (см.) и другие меры, нормализующие кровообращение; в ряде случаев показана кислородная терапия (см.). При остановке сердца непрямой массаж сердца, электрическая дифибрилляция, по показаниям — эндокардиальная электрическая стимуляция сердца, вводят адреналин, атропин и проводят другие меры реанимации (см.).

При гемическом типе Г. проводят переливание крови или эритроцитарной массы, стимулируют гемопоэз. В случаях отравления метгемоглобинообразователями — массивное кровопускание и обменная гемо-трансфузия; при отравлении окисью углерода наряду с вдыханием кислорода или карбогена назначают обменную гемотрансфузию (см. Переливание крови).

Для лечения в некоторых случаях применяют гипербарическую оксигенацию (см.)— метод, заключающийся в применении кислорода под повышенным давлением, что ведет к увеличению его диффузии в гипоксические участки тканей.

Для терапии и профилактики Г. применяют также лекарственные средства, обладающие антигипоксическим действием, не связанным с влиянием на системы доставки кислорода в ткани; некоторые из них повышают устойчивость к Г. за счет снижения общего уровня жизнедеятельности, в основном функциональной активности нервной системы, и уменьшения расхода энергии.

К фармакол, средствам такого типа относятся наркотические и нейролептические средства, средства, понижающие температуру тела, и др.; некоторые из них применяют при хирургических вмешательствах вместе с общей или локальной (кранио-церебральной) гипотермией для временного повышения устойчивости организма к Г. Благоприятное действие в ряде случаев оказывают глюкокортикоиды.

При нарушении кислотно-щелочного равновесия и электролитного баланса проводят соответствующую медикаментозную коррекцию и симптоматическую терапию (см. Алкалоз, Ацидоз).

оксибутират натрия воздействует на корковые структуры, дроперидол и диазепам (седуксен) — преимущественно на подкорково-стволовые отделы. Активация энергетического обмена осуществляется введением АТФ и кокарбоксилазы, аминокислотного звена — внутривенным введением гаммалона и церебролизина; применяют препараты, улучшающие усвоение кислорода клетками мозга (десклидиум и др.).

Среди химиотерапевтических средств, перспективных в плане использования для уменьшения проявлений острой Г., находятся бензохиноны — соединения с выраженными окислительно – восстановительными свойствами. Защитными свойствами обладают препараты типа гутимина и его производных.

Для предупреждения и лечения отека мозга применяют соответствующие леч. меры (см. Отек и набухание головного мозга).

При психомоторном возбуждении вводят р-ры нейролептиков, транквилизаторов, оксибутирата натрия в дозировках, соответствующих состоянию и возрасту больного. В отдельных случаях, если возбуждение не купируется, то проводят барбитуровый наркоз. При судорогах назначают седуксен внутривенно или барбитуровый наркоз.

Для лечения последствий Г. применяют в соответствующих сочетаниях дибазол, галантамин, глутаминовую к-ту, оксибутират натрия, препараты гаммааминомасляной к-ты, церебролизин, АТФ, кокарбоксилазу, пиридоксин, метандростенолон (неробол), транквилизаторы, общеукрепляющие средства, а также массаж и леч. физкультуру.

В экспериментальных и отчасти в клин. условиях исследован ряд веществ — так наз. антигипоксантов, противогипоксическое действие которых связано с их непосредственным влиянием на процессы биологического окисления. Эти вещества могут быть разделены на четыре группы.

К первой группе относятся вещества, являющиеся искусственными переносчиками электронов, способные разгружать от избытка электронов дыхательную цепь и НАД-зависимые дегидрогеназы цитоплазмы. Возможное включение этих веществ в качестве акцепторов электронов в цепь дыхательных ферментов при Г. определяется их окислительно-восстановительным потенциалом и особенностями хим. структуры. Среди веществ данной группы исследованы препарат цитохром С, гидрохинон и его дериваты, метилфеназин, феназинметасульфат и некоторые другие.

Действие второй группы антигипоксантов основано на свойстве ингибировать энергетически малоценное свободное (нефосфорилирующее) окисление в микросомах и внешней дыхательной цепи митохондрий, что экономит кислород для сопряженного с фосфорилированием окисления. Подобным свойством обладает ряд тиоамидинов группы гутимина.

в реально допустимых дозах эти препараты могут покрыть лишь весьма незначительную часть потребности организма в энергии. Кроме того, экзогенная АТФ может распадаться уже в крови или подвергаться расщеплению нуклеозидфосфатазами эндотелия кровеносных капилляров и других биол, мембран, не донося богатые энергией связи до клеток жизненно важных органов, однако нельзя полностью исключить возможность положительного влияния экзогенной АТФ на гипоксическое состояние.

К четвертой группе относят вещества (напр., пангамовая к-та), отводящие продукты анаэробного обмена и тем самым облегчающие кислороднезависимые пути образования энергетически богатых соединений.

Улучшение энергообеспечения может быть осуществлено и посредством комбинации витаминов (С, B1, B2, B6, B12, PP, фолиевая, пантотеновая кислоты и др.), глюкозы, веществ, повышающих сопряжение окисления и фосфорилирования.

Большое значение в профилактике гипоксии имеют специальные тренировки, повышающие возможности адаптации к гипоксии (см. ниже).

Прогноз

Прогноз зависит прежде всего от степени и длительности Г., а также от тяжести поражения нервной системы. Умеренные структурные изменения клеток головного мозга обычно более или менее обратимы, при выраженных изменениях могут образоваться очаги размягчения мозга.

ПОДРОБНОСТИ:   При инфаркте миокарда в сердечной мышце развивается

У больных, перенесших острую Г. I степени, астенические явления сохраняются обычно не более 1—2 нед. После выведения из Г. II степени у некоторых больных общие судороги могут возникать в течение нескольких суток; в этот же период могут наблюдаться преходящие гиперкинезы, агнозия, корковая слепота, галлюцинации, приступы возбуждения и агрессивности, деменция. Выраженная астения и некоторые расстройства психики могут сохраняться иногда в течение года.

У больных, перенесших Г. III степени, интеллектуально-мнестические нарушения, расстройства корковых функций, судорожные припадки, нарушения движений и чувствительности, симптомы поражения ствола мозга и спинальные нарушения могут обнаруживаться и в отдаленных периодах; длительно сохраняется психопатизация личности.

Прогноз ухудшается при нарастающих явлениях отека и поражения ствола мозга (паралитический мидриаз, плавающие движения глазных яблок, угнетение зрачковой реакции на свет, корнеальных рефлексов), продолжительном и глубоком коматозном состоянии, некупирующемся эпилептическом синдроме, при продолжительном угнетении биоэлектрической активности головного мозга.

Гипоксия в условиях авиационного и космического полета

Современные герметические кабины самолетов и кислородно-дыхательная аппаратура уменьшили опасность Г. для пилотов и пассажиров, однако в полете нельзя полностью исключить возможность аварийной ситуации (разгерметизация кабин, неполадки в кислородно-дыхательной аппаратуре и установках, регенерирующих воздух в кабинах космических кораблей).

В герметических кабинах различных типов высотных самолетов по техническим соображениям поддерживается несколько более низкое давление воздуха, чем атмосферное, поэтому у экипажа и пассажиров в полете может возникать небольшая степень Г., как, напр., при подъеме на высоту 2000 м. Хотя индивидуальные комплекты высотного оборудования создают на больших высотах избыточное давление кислорода в легких, все же и при их эксплуатации возможно возникновение умеренной Г.

Для летного состава определены границы снижения парциального давления кислорода во вдыхаемом воздухе и, следовательно, границы допустимой в полете Г. Эти границы были основаны на наблюдениях за пребыванием здоровых людей в течение нескольких часов на высотах до 4000 м, в условиях барокамеры или в полете;

Установлено, что летчики в дневное время могут осуществлять полеты без использования кислорода для дыхания на высотах до 4000 м. В ночное время на высотах 1500 — 2000 м проявляются нарушения сумеречного зрения, а на высотах 2500 — 3000 м — расстройства цветного и глубинного зрения, что может неблагоприятно сказаться на управлении самолетом, особенно при посадке.

В связи с этим летчикам в полете рекомендовано не превышать высоту 2000 м в ночное время или начинать дыхание кислородом с высоты 2000 м. С высоты 4000 м дыхание кислородом или газовой смесью, обогащенной кислородом, обязательно, т. к. на высоте 4000— 4500 м появляются симптомы высотной болезни (см.).

Большая опасность острой Г. в полете связана с тем, что развитие нарушений деятельности нервной системы, приводящих к потере работоспособности, протекает вначале субъективно незаметно; в некоторых случаях возникает эйфория и поступки летчика и космонавта становятся неадекватными. Это вызвало необходимость разработки специальной электроаппаратуры, предназначенной для предупреждения летного состава и лиц, испытуемых в барокамере, о развитии у них Г.

Работа этих автоматических сигнализаторов гипоксического состояния основана либо на определении парциального давления кислорода во вдыхаемом воздухе, либо на анализе физиол, показателей у лиц, подвергнутых влиянию Г. По характеру изменений биоэлектрической активности мозга, снижению насыщения артериальной крови кислородом, характеру изменения частоты сердечных сокращений и другим параметрам прибором определяется и сигнализируется наличие и степень Г.

В условиях космических полетов развитие Г. возможно в случае отказа системы регенерации атмосферы в кабине корабля, системы кислородообеспечения скафандра при выходе в космос, а также в случае внезапной разгерметизации кабины космического корабля во время полета. Сверхострое течение Г., обусловленное процессом дезоксигенации, приведет в таких случаях к острому развитию тяжелого патол, состояния, к-рое осложняется бурным процессом газообразования — выхода растворенного в тканях и крови азота (декомпрессионные расстройства в узком смысле слова).

Вопрос о допустимой границе снижения парциального давления кислорода в воздухе кабины космического корабля и допустимой степени Г. у космонавтов решается с большой осторожностью. Существует мнение, что в продолжительных космических полетах, учитывая неблагоприятное влияние невесомости, не следует допускать Г.

, превышающую ту, к-рая возникает при подъеме на высоту 2000 м. Следовательно, при наличии в кабине нормальной земной атмосферы (давление -760 мм рт. ст. и 21 % кислорода во вдыхаемой газовой смеси, как это создается в кабинах советских космических кораблей) временное снижение содержания кислорода допускается до 16%.

С целью тренировок для создания адаптации к Г. изучаются возможность и целесообразность применения в кабинах космических кораблей так наз. динамической атмосферы с периодическим понижением парциального давления кислорода в физиологически допустимых пределах, сочетающимся в отдельные моменты с небольшим повышением (до 1,5 — 2%) парциального давления углекислого газа.

Адаптация к гипоксии

Адаптация к гипоксии — постепенно развивающийся процесс увеличения устойчивости организма к Г., в результате к-рого организм приобретает способность осуществлять активные поведенческие реакции при таком недостатке кислорода, который ранее был несовместим с нормальной жизнедеятельностью. Исследования позволяют выделить в адаптации к Г. четыре координированных между собой приспособительных механизма.

1. Механизмы, мобилизация которых может обеспечить достаточное поступление кислорода в организм, несмотря на дефицит его в окружающей среде: гипервентиляция легких, гиперфункция сердца, обеспечивающая движение увеличенного количества крови от легких к тканям, полицитемия, увеличение кислородной емкости крови. 2.

Механизмы, обеспечивающие, несмотря на гипоксемии), достаточное поступление кислорода к мозгу, сердцу и другим жизненно важным органам, а именно: расширение артерий и капилляров (мозга, сердца и т. п.), уменьшение расстояния для диффузии кислорода между капиллярной стенкой и митохондриями клеток за счет образования новых капилляров, изменения свойств клеточных мембран и увеличение способности клеток утилизировать кислород за счет увеличения концентрации миоглобина. 3.

Увеличение способности клеток и тканей утилизировать кислород из крови и образовывать АТФ, несмотря на гипоксемию. Эта возможность может быть реализована за счет увеличения сродства цитохромоксидазы (конечного фермента дыхательной цепи) к кислороду, т. е. путем изменения качества митохондрий, либо увеличения количества митохондрий на единицу массы клетки, или за счет увеличения степени сопряжения окисления с фосфорилированием. 4.

Соотношение этих компонентов адаптации в целом организме таково, что на раннем этапе Г. (в аварийной стадии адаптационного процесса) возникает гипервентиляция (см. Легочная вентиляция). Увеличивается минутный объем сердца, немного повышается АД, т. е. возникает синдром мобилизации транспортных систем, сочетающийся с более или менее выраженными явлениями функциональной недостаточности — адинамией, нарушениями условно-рефлекторной деятельности, снижением всех видов поведенческой активности, падением веса.

В дальнейшем, с реализацией других адаптационных сдвигов, и в частности тех, которые протекают на клеточном уровне, энергетически расточительная гиперфункция транспортных систем становится как бы излишней и устанавливается стадия относительно устойчивой адаптации с небольшой гипервентиляцией и гиперфункцией сердца, но с высокой поведенческой или трудовой активностью организма.

Установлено, что в основе увеличения мощности транспортных систем и систем утилизации кислорода при адаптации к Г. лежит активация синтеза нуклеиновых к-т и белков. Именно эта активация обеспечивает увеличение количества капилляров и митохондрий в мозге и сердце, увеличение массы легких и их дыхательной поверхности, развитие полицитемии и другие адаптационные явления.

Введение животным факторов, ингибирующих синтез РНК, устраняет данную активацию и делает невозможным развитие адаптационного процесса, а введение Ко-факторов синтеза и предшественников нуклеиновых к-т ускоряет развитие адаптации. Активация синтеза нуклеиновых к-т и белков обеспечивает формирование всех структурных изменений, составляющих основу этого процесса.

Развивающееся при адаптации к Г. увеличение мощности систем транспорта кислорода и ресинтеза АТФ увеличивает способность людей и животных адаптироваться к другим факторам окружающей среды. Адаптация к Г. увеличивает силу и скорость сердечных сокращений, максимальную работу, к-рую может осуществить сердце;

Предварительная адаптация к Г. потенцирует развитие последующей адаптации к физ. нагрузкам. У адаптированных к Г. животных установлено увеличение степени сохранения временных связей и ускорение превращения кратковременной, легко стираемой чрезвычайными раздражителями памяти в долговременную, стабильную память.

Это изменение функций мозга является результатом активации синтеза нуклеиновых к-т и белков в нейронах и глиальных клетках коры головного мозга адаптированных животных. При предварительной адаптации к Г. повышается резистентность организма к различным повреждениям системы кровообращения, системы крови и мозга.

Адаптация к Г. была успешно использована для профилактики недостаточности сердца при экспериментальных пороках, ишемических и симпатомиметических некрозах миокарда, ДОК-солевой гипертензии, последствий кровопотери, а также для профилактики нарушения поведения животных в конфликтной ситуации, эпилептиформных судорог, эффекта галлюциногенов.

Возможность использования адаптации к Г. для повышения устойчивости человека к этому фактору и повышения общей резистентности организма в специальных условиях деятельности, в частности в космических полетах, а также для профилактики и терапии заболеваний человека является предметом клин.-физиол, исследований.

См. также Адаптация, Адаптация к высоте.

Библиография: Аничков С.В. и Беленький М. Л. Фармакология химиорецепторов каротидного клубочка, Л., 1962, библиогр.; Блюменфельд Л. А* Гемоглобин и обратимое присоединение кислорода, М., 1957, библиогр.; Боголепов Н. К. Коматозные состояния, М., 1962, библиогр.; БоголеповН.Н, и др. Электронномикроскопическое исследование ультраструктуры мозга человека при инсульте, Журн, невропат, и психиат., т. 74, № 9, с.

1349, 1974, библиогр.; Ван Лир Э. и Стикней К-Гипоксия, пер. с англ., М., 1967; В и-ленский Б.С. Антикоагулянты в лечении и профилактике церебральных ишемий, Л., 1976; Владимиров Ю. А, и Арчаков А. И. Перекисное окисление липидов в биологических мембранах, М., 1972; В о й т к e в и ч В, И., .Хроническая гипоксия, Л.

, 1973, библиогр.; Гаевская М. С. Биохимия мозга при умирании и оживлении организма, М., 1963, библиогр.; Гурвич А. М. Электрическая активность умирающего и оживающего мозга, Л., 1966, библиогр.; К а н ь ш и н а Н. Ф., К патологической анатомии острой и пролонгированной гипоксии, Арх. патол., т. 35, Ns 7, с.

82, 1973, библиогр.; К о-товскийЕ. Ф. и Ш и м к e в и ч Л. Л. Функциональная морфология при экстремальных воздействиях, М., 1971, библиогр.; Меерсон Ф. 3. Общий механизм адаптации и профилактики, М., 1973, библиогр.; он же, Механизмы адаптации к высотной гипоксии, в кн.: Пробл., гипоксии и гипероксии, под ред. Г. А.

Сте-панского, с. 7, М., 1974, библиогр.; Многотомное руководство по патологической физиологии, под ред. H. Н. Сиротинина, т. 2, с. 203, М., 1966, библиогр.; Негов-с к и й В. А. Патофизиология и терапия агонии и клинической смерти, М., 1954, библиогр.; Основы космической биологии и медицины, под ред. О. Г. Газенко и М. Кальвина, т. 1—3, М.

, 1975, библиогр.; Пашутин В. В. Лекции общей патологии, ч. 2, Казань, 1881; П e т р о в И. Р« Кислородное голодание головного мозга# Л., 1949, библиогр.; о н ж е, Роль центральной нервной системы, аденогипофиза и коры надпочечников при кислородной недостаточности, Л., 1967, библиогр.; Сеченов И. М.

Избранные труды, М., 1935; СиротининН. Н. Основные положения профилактики и терапии гипоксических состояний, в кн.: Физиол, и патол* дыхания, гипоксия и оксигенотерапия, под ред. А. Ф. Макарченко и др., с. 82, Киев, 1958; Ч а р н ы й А. М. Патофизиология аноксических состояний, М., 1947, библиогр.; Barcroft J. The respiratory function of the blood, v, 1, Cambridge# 1925; B e r t P. La pression baromStrique, P., 1878,

H. И. Лосев; Ц. H. Боголепов, Г. С. Бурд (невр.), В. Б. Малкин (косм.), Ф. 3. Меерсон (адаптация).

Гипоксия и старение

Любое проявление жизнедеятельности клетки требует определенных энергетических трат. Образование нужного количества энергии в нужном месте клетки — важнейшее условие ее жизни. Но обновление АТФ, главного поставщика энергии в клетке в старости снижается. Увы, старость, в первую очередь, означает возрастающую утомляемость.

Содержание и обновление аденозинтрифосфорной кислоты (АТФ) в мозгу в старости падает, что приводит к снижению интенсивности генерации энергии.

Даже в невысокогорных условиях в старости существует определенная степень гипоксии — кислородного голодания мозга.

Как видно на рис. 2, взятом из работы Ф. Бурльера, изменяется взаимоотношение между плотностью нервных клеток, кровоснабжением мозга и его кислородным обеспечением.

Рис. 2. Возрастные изменения плотности нейронов в коре (1), интенсивности кровотока в мозге (2), и потребления кислорода мозгом (3) у человека [ 18 ].

В процессе старения снижаются и энергетические траты организма. Снижение энергетических трат организма связано с двумя причинами: 1) с уменьшением числа активных клеток, характеризующихся высоким уровнем течения энергетических процессов; 2) с изменением потребления кислорода каждой клеткой, так называемым тканевым дыханием.

Об этом свидетельствуют изменения основного обмена — количества кислорода, потребляемого организмом в состоянии покоя. Энергетические траты организма можно рассчитать в калориях, на основании поглощенного кислорода. Оказалось, что энергетические траты человека в возрасте 70 – 80 лет на 18 – 20% ниже, чем в 20 – 30 лет.

Вся система энергетического обеспечения может быть условно разделена на три этапа: генерацию энергии, транспорт и использование энергии. Как было показано нами и Л. Н. Богацкой, при старении наступают изменения во всех трех звеньях. [ 19 ]

При старении происходит снижение количества митохондрий в клетках, появляются разрушенные митохондрии, снижается интенсивность окислительного фосфорилирования, меняется мембранный потенциал митохондрий, что приводит к снижению процессов генерации энергии. Наряду с этими сдвигами возникают и процессы витаукта, которые, однако, не могут компенсировать недостаточность энергетического обеспечения.

Основная структура митохондрий — белки. По данным А. Я. Литошенко, при старении снижается синтез белков митохондрий, и это становится важной причиной недостаточности энергетических процессов. Определенное количество молекул АТФ синтезируется и в процессе гликолиза — начальном пути окисления углеводов.

Процессы транспорта энергии в клетках, к примеру в сердечной мышце, осуществляются при участии молекул креатинфосфата. Это вещество может переносить фосфатные группы из митохондрий к местам потребления энергии, где с участием креатинфосфата и специального фермента креатинфосфокиназы происходит ресинтез АТФ.

Использование энергии, запасенной в форме АТФ, осуществляется при помощи фермента АТФазы (аденозинтрифосфатазы), отщепляющей фосфорные группы от этой молекулы. Этот фермент расположен в разных местах клетки, там, где нужна энергия. Важный механизм витаукта — повышение или же сохранение активности ряда АТФаз.

Путь поддержания энергетического потенциала клеток, органов b организма в целом — оптимальный режим их деятельности и восстановление в ходе нагрузок.

Оптимальный режим деятельности достигается умеренно двигательной и умственной деятельностью, а также эмоциональными нагрузками. Для восстановления хороши легкие аэробные нагрузки, прогулки на свежем воздухе. Великолепно восстанавливают и вечерние спа-процедуры термальной бикарбонатной водой, которые мы рекомендуем всем для хорошего отдыха.

В следующей статье мы рассмотрим симптомы и признаки гипоксии и гипоксемии, а затем перечислим тех людей, кто находится в зоне риска кислородного голодания.

Adblock detector